• 共识算法
    • 问题挑战
    • 常见算法
    • 理论界限

    共识算法

    实际上,要保障系统满足不同程度的一致性,往往需要通过共识算法来达成。

    共识算法解决的是对某个提案(Proposal),大家达成一致意见的过程。提案的含义在分布式系统中十分宽泛,如多个事件发生的顺序、某个键对应的值、谁是领导……等等,可以认为任何需要达成一致的信息都是一个提案。

    注:实践中,一致性的结果往往还需要客户端的特殊支持,典型地通过访问足够多个服务节点来验证确保获取共识后结果。

    问题挑战

    实际上,如果分布式系统中各个节点都能保证以十分强大的性能(瞬间响应、高吞吐)无故障的运行,则实现共识过程并不复杂,简单通过多播过程投票即可。

    很可惜的是,现实中这样“完美”的系统并不存在,如响应请求往往存在时延、网络会发生中断、节点会发生故障、甚至存在恶意节点故意要破坏系统。

    一般地,把故障(不响应)的情况称为“非拜占庭错误”,恶意响应的情况称为“拜占庭错误”(对应节点为拜占庭节点)。

    常见算法

    针对非拜占庭错误的情况,一般包括 Paxos、Raft 及其变种。

    对于要能容忍拜占庭错误的情况,一般包括 PBFT 系列、PoW 系列算法等。从概率角度,PBFT 系列算法是确定的,一旦达成共识就不可逆转;而 PoW 系列算法则是不确定的,随着时间推移,被推翻的概率越来越小。

    理论界限

    搞学术的人都喜欢对问题先确定一个界限,那么,这个问题的最坏界限在哪里呢?很不幸,一般情况下,分布式系统的共识问题无解。

    当节点之间的通信网络自身不可靠情况下,很显然,无法确保实现共识。但好在,一个设计得当的网络可以在大概率上实现可靠的通信。

    然而,即便在网络通信可靠情况下,一个可扩展的分布式系统的共识问题的下限是无解。

    这个结论,被称为 FLP 不可能性 原理,可以看做分布式领域的“测不准原理”。